Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Appl Microbiol Biotechnol ; 108(1): 315, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38689185

The plant microbes are an integral part of the host and play fundamental roles in plant growth and health. There is evidence indicating that plants have the ability to attract beneficial microorganisms through their roots in order to defend against pathogens. However, the mechanisms of plant microbial community assembly from below- to aboveground compartments under pathogen infection remain unclear. In this study, we investigated the bacterial and fungal communities in bulk soil, rhizosphere soil, root, stem, and leaf of both healthy and infected (Potato virus Y disease, PVY) plants. The results indicated that bacterial and fungal communities showed different recruitment strategies in plant organs. The number and abundance of shared bacterial ASVs between bulk and rhizosphere soils decreased with ascending migration from below- to aboveground compartments, while the number and abundance of fungal ASVs showed no obvious changes. Field type, plant compartments, and PVY infection all affected the diversity and structures of microbial community, with stronger effects observed in the bacterial community than the fungal community. Furthermore, PVY infection, rhizosphere soil pH, and water content (WC) contributed more to the assembly of the bacterial community than the fungal community. The analysis of microbial networks revealed that the bacterial communities were more sensitive to PVY infection than the fungal communities, as evidenced by the lower network stability of the bacterial community, which was characterized by a higher proportion of positive edges. PVY infection further increased the bacterial network stability and decreased the fungal network stability. These findings advance our understanding of how microbes respond to pathogen infections and provide a rationale and theoretical basis for biocontrol technology in promoting sustainable agriculture. KEY POINTS: • Different recruitment strategies between plant bacterial and fungal communities. • Bacterial community was more sensitive to PVY infection than fungal community. • pH and WC drove the microbial community assembly under PVY infection.


Bacteria , Fungi , Plant Diseases , Plant Roots , Rhizosphere , Soil Microbiology , Fungi/physiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Plant Diseases/microbiology , Plant Roots/microbiology , Microbiota , Plant Leaves/microbiology , Hydrogen-Ion Concentration , Mycobiome , Plants/microbiology
2.
Eur J Pharmacol ; 963: 176264, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38123006

AIMS: Ischemic stroke is a severe cerebrovascular disease in which neuronal death continually occurs through multiple forms, including apoptosis, autophagy, pyroptosis and ferroptosis. Quercetin (QRC), as a natural flavonoid compound, has been reported to have pharmacological effects on ischemic injury accompanied by unclear anti-ferroptotic mechanisms. This study is designed to investigate the therapeutic effects of QRC against ferroptosis in ischemic stroke. MATERIALS AND METHODS: In vivo, the model of MCAO rats were used to assess the protective effect of QRC on cerebral ischemic. Additionally, we constructed oxidative stressed and ferroptotic cell models to explore the effects and mechanisms of QRC on ferroptosis. The related proteins were analysed by western blotting, immunohistochemical and immunofluorescence techniques. RESULTS: The experiments demonstrated that QRC improves neurological deficits, infarct volume, and pathological features in MCAO rats, also increased the viability of HT-22 cells exposed to H2O2 and erastin. These results, including MDA, SOD, GSH, ROS levels and iron accumulation, indicated that QRC suppresses the generation of lipid peroxides and may involve in the regulatory of ferroptosis. Both in vitro and in vivo, QRC was found to inhibit ferroptosis by up-regulating GPX4 and FTH1, as well as down-regulating ACSL4. Furthermore, we observed that QRC enhances the nuclear translocation of Nrf2 and activates the downstream antioxidative proteins. Importantly, the effect of QRC on ferroptosis can be reversed by the Nrf2 inhibitor ML385. CONCLUSIONS: This study provides evidence that QRC has a neuroprotective effect by inhibiting ferroptosis, demonstrating the therapeutic potential for cerebral ischemic stroke.


Brain Injuries , Ferroptosis , Ischemic Stroke , Quercetin , Stroke , Animals , Rats , Ferroptosis/drug effects , Hydrogen Peroxide , NF-E2-Related Factor 2 , Quercetin/pharmacology , Quercetin/therapeutic use , Signal Transduction , Stroke/drug therapy , Heme Oxygenase (Decyclizing)/drug effects , Heme Oxygenase (Decyclizing)/metabolism
3.
J Ethnopharmacol ; 315: 116567, 2023 Oct 28.
Article En | MEDLINE | ID: mdl-37172921

ETHNOPHARMACOLOGICAL RELEVANCE: Paeoniae Radix Rubra (PRR), the root of Paeonia lactiflora Pall. or Paeonia veitchii Lynch, has been widely used to promote blood circulation and eliminate blood stasis in Chinese clinical practice, but its effect on cerebral ischemia is still rarely reported. AIM OF THE STUDY: The present study aimed to assess the potential therapeutic possibilities of the extract of PRR (PRRE) on cerebral ischemia, further exploring the underlying mechanism, and preliminary screening of the corresponding active components. MATERIALS AND METHODS: The neuroprotective effects of PRRE in Sprague-Dawley (SD) rats with middle cerebral artery occlusion (MCAO) injury and mouse hippocampal neuronal cells (HT22 cell line) following oxidative stress were confirmed. The mechanism was investigated using immunohistochemical staining, western blotting, transmission electron microscopy (TEM), and immunofluorescence. The active components of PRRE were analysed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and molecular docking. RESULTS: The in vivo study showed that PRRE reduced infarct volume and improved neurological deficits in rats, and the expression of GPX4, FTH1, Beclin1, LC3 II, and p-Akt was upregulated in the rat hippocampi. In addition, the vitro research indicated that PRRE can also alleviate H2O2-induced HT22 cell damage by regulating cytokines such as malondialdehyde (MDA), reduced glutathione (GSH) and reactive oxygen species (ROS), and the expressions of GPX4 and Beclin1 were observed to be elevated. The PI3K/Akt signalling pathway was inhibited by LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K). Furthermore, the effective components of PRRE in regulating ferroptosis and autophagy are mainly defined as albiflorin, paeoniflorin, benzoyl paeoniflorin, oleanolic acid, and hederagenin. CONCLUSION: PRRE exerts neuroprotective effects against cerebral ischaemic injury by inhibiting ferroptosis and activating autophagy through the PI3K/Akt signalling pathway. This study provides an experimental basis for the potential application of PRRE as a novel therapeutic drug, and PI3K/Akt-associated ferroptosis and autophagy as therapeutic targets for cerebral ischemia.


Brain Ischemia , Ferroptosis , Neuroprotective Agents , Reperfusion Injury , Rats , Mice , Animals , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Chromatography, Liquid , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Beclin-1 , Molecular Docking Simulation , Hydrogen Peroxide/pharmacology , Tandem Mass Spectrometry , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Autophagy , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism
4.
Cancer Biother Radiopharm ; 38(10): 720-725, 2023 Dec.
Article En | MEDLINE | ID: mdl-33601927

Objective: Nuclear casein kinase and cyclin-dependent kinase substrate 1 (NUCKS1) is highly expressed in some tumors, including hepatocellular carcinoma (HCC). However, its clinical significance in HCC prognosis is still unclear. The aim of this study was to explore the expression and prognostic value of NUCKS1 in HCC. Materials and Methods: Quantitative real-time polymerase chain reaction was used to detect relative expression of NUCKS1 mRNA in HCC tissues and corresponding adjacent normal tissues. The relationship between NUCKS1 expression and clinical characteristics of patients was analyzed by χ2 test. Kaplan-Meier method and Cox regression analysis were applied to estimate prognostic value of NUCKS1 in HCC. Results: Compared with normal ones, the expression of NUCKS1 mRNA was significantly upregulated in HCC tissues (p < 0.001). Besides, NUCKS1 expression was closely associated with tumor differentiation, tumor node metastasis stage, vascular invasion, and metastasis (p < 0.05). Kaplan-Meier analysis revealed that overall survival was obviously longer in HCC patients with low expression of NUCKS1 than those with high NUCKS1 expression (log rank test, p = 0.001). NUCKS1 might be an independent prognostic factor for HCC patients (HR = 1.905, 95% CI = 1.106-3.283, p = 0.020). Conclusions: NUCKS1 may be correlated with the progression of HCC and serve as a potential predictive factor for the prognosis of this disease.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Carcinoma, Hepatocellular/pathology , Gene Expression Regulation, Neoplastic , Kaplan-Meier Estimate , Liver Neoplasms/pathology , Prognosis , RNA, Messenger
5.
Cell Death Dis ; 13(11): 929, 2022 11 05.
Article En | MEDLINE | ID: mdl-36335088

Heat shock protein (HSP) 90, an important component of the molecular chaperone network, is closely concerned with cellular signaling pathways and stress response by participating in the process of maturation and activation of client proteins, playing a crucial role both in the normal and abnormal operation of the organism. In functionally defective tissues, programmed cell death (PCD) is one of the regulable fundamental mechanisms mediated by HSP90, including apoptosis, autophagy, necroptosis, ferroptosis, and others. Here, we show the complex relationship between HSP90 and different types of PCD in various diseases, and discuss the possibility of HSP90 as the common regulatory nodal in multiple PCD, which would provide a new perspective for the therapeutic approaches in disease.


Apoptosis , HSP90 Heat-Shock Proteins , Humans , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Apoptosis/physiology , Molecular Chaperones , Autophagy/genetics
6.
Front Pharmacol ; 13: 963179, 2022.
Article En | MEDLINE | ID: mdl-36210857

Traditional Chinese medicine (TCM) has attracted a great deal of attention in the treatment of cerebral ischemia is credited with the remarkable neuroprotective effects. However, the imperfect functional mechanism of TCM is a major obstacle to their application. Many studies have been conducted to illustrate the pathophysiology of post-ischemic cerebral ischemia by elucidating the neuronal cell death pathway. Meanwhile, a new type of cell death, ferroptosis, is gradually being recognized in various diseases and is becoming a new pathway of therapeutic intervention strategy to solve many health problems. Especially since ferroptosis has been found to be closely involved into the pathogenesis of cerebral ischemia, it has been considered as a key target in the treatment of cerebral ischemia. Therefore, this paper reviews the latest research findings about the treatment of cerebral ischemia with TCM focused on ferroptosis as a target. Also, in order to explores the possibility of a new approach to treat cerebral ischemia with TCM, we discusses the correlation between ferroptosis and other cell death pathways such as apoptosis and autophagy, which would provide references for the following researches.

8.
Reprod Sci ; 29(5): 1608-1617, 2022 05.
Article En | MEDLINE | ID: mdl-35084714

It has been long-known that endometrium-secreted cytokines play a critical role during embryo implantation. However, whether cytokines secreted from the embryo are relevant to the process of embryo implantation remains unclear. The concentration of cytokines in embryo culture medium was tested using a newly developed, high-sensitivity single-cell proteomic platform and evaluated in comparison to embryo quality and clinical outcome. The effect of TNF-α on embryo and endometrium Ishikawa cells was investigated using immunofluorescence staining, CCK-8 assay, TUNEL staining, and RT-qPCR. Of the 10 cytokines measured, only TNF-α concentration was significantly higher in the group with embryo implantation failure. Immunofluorescence staining showed that the expression of TNF-α was unevenly distributed in blastocysts, and the expression level was significantly correlated with the blastocyst inner cell mass (ICM) quality score. Gene profiling showed that addition of TNF-α led to increased expression of tumor necrosis factor receptor 1 (TNFR1) and apoptosis-related genes and that this could be inhibited by the TNF-α receptor inhibitor etanercept (ETA). In addition, an increased expression of water and ion channels, including AQP3, CFTR, ENaCA, and CRISP2 was also observed which could also be inhibited by ETA. Our results show that higher embryo-secreted TNF-α levels are associated with implantation failure through activation of TNF-α receptor, and TNF-α may be an independent predictor for pre-transfer assessment of the embryo development potential in IVF patients.


Proteomics , Tumor Necrosis Factor-alpha , Blastocyst/metabolism , Cell Adhesion Molecules/metabolism , Culture Media/pharmacology , Cytokines/metabolism , Embryo Implantation/physiology , Endometrium/metabolism , Female , Humans , Tumor Necrosis Factor-alpha/metabolism
9.
Med Sci Monit ; 27: e926760, 2021 Mar 31.
Article En | MEDLINE | ID: mdl-33788826

BACKGROUND Hepatocellular carcinoma (HCC) occurs frequently in China, with high morbidity and mortality. Cell division cycle 20 homolog (CDC20) is reportedly related to many cancers. In this study, we discuss a potential link of CDC20 expression to HCC patients' prognoses. MATERIAL AND METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to assess CDC20 expression in HCC and the paired noncancerous tissues. Chi-square analysis was used to assess potential association of CDC20 expression with clinicopathologic profiles among HCC patients. The overall survival for HCC patients with different CDC20 expressions was assessed using the Kaplan-Meier method. To evaluate the prognostic value for HCC patients, Cox regression analyses were performed. RESULTS The expression of CDC20 was elevated among HCC specimens compared with adjacent noncancerous ones (P<0.05). The expression of CDC20 was significantly related to differentiation (P<0.001), tumor node metastasis stage (P<0.001), and lymphatic metastasis (P<0.001). Moreover, HCC patients with high CDC20 expression had dismal overall survival rates compared with low CDC20 expression (P<0.05). CDC20 alone could forecast HCC prognoses according to multivariable Cox regression analysis (hazard ratio=2.354, 95% confidence interval=1.177-4.709, P=0.016). CONCLUSIONS Overexpressed CDC20 may act as a reliable biomarker for dismal prognoses among HCC patients.


Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/diagnosis , Cdc20 Proteins/metabolism , Liver Neoplasms/diagnosis , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/mortality , Cdc20 Proteins/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/mortality , Male , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Prognosis , Proportional Hazards Models , Survival Analysis , Up-Regulation
10.
Medicine (Baltimore) ; 98(7): e14379, 2019 Feb.
Article En | MEDLINE | ID: mdl-30762738

Unexpected poor ovarian response (UPOR) is a problem for both clinicians and infertile couples, because our understanding of this situation is limited. This article investigated incidence of UPOR in women <35 years with normal ovarian reserve function with further analysis.This is a retrospective study, which included 567 women who accepted their first IVF-ET/ICSI. Based on the number of oocytes retrieved, clinic pregnancy rate of fresh cycle, and cycle cancellation rate of fresh cycle, the included cycles were divided into three groups namely unexpected poor ovarian response (UPOR) (n = 120), for which number of oocytes retrieved was not more than 6; normal ovarian response (NOR) (n = 223), for which number of oocytes retrieved was between 7 and 12; and unexpected high ovarian response (UHOR) (n = 224), for which the number of oocytes retrieved was 13 at least. The comparisons of clinical outcomes and correlated hormones among groups were carried out.The incidence of UPOR in Chinese women is 21.16%. Patient age (χ = 6.177, P = .0129), basic FSH (χ = 20.585, P < .0001), basic LH (χ = 11.689, P = .0006), and AFC (χ = 8.053, P = .0045) might be helpful for diagnosis of UPOR.The basic evaluation of ovarian function may no longer be simplified into normal and abnormal ovarian reserve function; rather, by using a detailed numerical analysis, such as basal FSH and LH levels, the ovarian response to ovulation induction may be predicted to some extent.


Fertilization in Vitro , Infertility, Female/epidemiology , Infertility, Female/physiopathology , Oocyte Retrieval/statistics & numerical data , Adult , Age Factors , China/epidemiology , Female , Follicle Stimulating Hormone/blood , Humans , Incidence , Infertility, Female/blood , Luteinizing Hormone/blood , Retrospective Studies
11.
FASEB J ; 33(4): 4836-4850, 2019 04.
Article En | MEDLINE | ID: mdl-30601695

Oxidative stress-induced vascular endothelial cell (VEC) injury is a major mechanism in the initiation and development of atherosclerosis. Lunasin, a soybean-derived 43-aa peptide, has been previously shown to possess potent antioxidant and anti-inflammatory activities other than its established anticancer activities. This study investigated the effects of lunasin on protecting VECs from oxidative damage and inhibiting atherosclerotic plaque progression in apolipoprotein E-deficient (ApoE-/-) mice and explored its underlying mechanism. Biochemical and histologic analyses were performed by using EA.hy926 human VECs and a high-fat diet (HFD) ApoE-/- mouse atherosclerosis model. Our data indicated that lunasin attenuated H2O2-induced, mitochondria-dependent endothelial apoptosis via down-regulating Bax and up-regulating Bcl-2, inhibiting the mitochondrial depolarization, and reducing the release of cytochrome c, as well as decreasing the activation of caspase-9 and caspase-3 in vitro and in vivo. Mechanic studies showed that lunasin significantly up-regulated heme oxygenase-1 via the PI3K/Akt/nuclear factor erythroid 2-related factor 2/antioxidant response element pathway, and reduced H2O2-induced ROS production in VECs, thereby attenuating oxidant-induced endothelial injury and inhibiting atherosclerotic plaque progression in ApoE-/- mice. In conclusion, our in vitro and in vivo data suggest that lunasin protects VECs from oxidative damage by enhancing heme oxygenase-1 expression via activation of the PI3K/Akt/nuclear factor erythroid 2-related factor 2/antioxidant response element pathway and inhibiting mitochondria-dependent apoptosis, thereby effectively attenuating atherosclerosis in HFD-fed ApoE-/- mice. Lunasin may act as a potential therapeutic agent for the prevention and treatment of atherosclerosis.-Gu, L., Ye, P., Li, H., Wang, Y., Xu, Y., Tian, Q., Lei, G., Zhao, C., Gao, Z., Zhao, W., Tan, S. Lunasin attenuates oxidant-induced endothelial injury and inhibits atherosclerotic plaque progression in ApoE-/- mice by up-regulating heme oxygenase-1 via PI3K/Akt/Nrf2/ARE pathway.


Apolipoproteins E/metabolism , Heme Oxygenase-1/metabolism , NF-E2-Related Factor 2/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Plant Proteins/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Animals , Apolipoproteins E/genetics , Apoptosis/drug effects , Hydrogen Peroxide/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress/drug effects
12.
Prep Biochem Biotechnol ; 47(6): 619-626, 2017 Jul 03.
Article En | MEDLINE | ID: mdl-28151045

Fusion expression provides an effective means for the biosynthesis of longer peptides in Escherichia coli. However, the commonly used fusion tags are primarily suitable for laboratory scale applications due to the high cost of commercial affinity resins. Herein, a novel approach exploiting hirudin as a multipurpose fusion tag in combination with tobacco etch virus (TEV) protease cleavage has been developed for the efficient and cost-effective production of a 43-amino acid model peptide lunasin in E. coli at preparative scale. A fusion gene which allows for lunasin to be N-terminally fused to the C-terminus of hirudin through a flexible linker comprising a TEV protease cleavage site was designed and cloned in a secretion vector pTASH. By cultivation in a 7-L bioreactor, the fusion protein was excreted into the culture medium at a high yield of ~380 mg/L, which was conveniently recovered and purified by inexpensive HP20 hydrophobic chromatography at a recovery rate of ~80%. After polishing and cleavage with TEV protease, the finally purified lunasin was obtained with ≥95% purity and yield of ~86 mg/L culture medium. Conclusively, this hirudin tagging strategy is powerful in the production of lunasin and could be applicable for the production of other peptides at preparative scale.


Cloning, Molecular/methods , Escherichia coli/genetics , Glycine max/genetics , Hirudins/genetics , Recombinant Fusion Proteins/genetics , Soybean Proteins/genetics , Cell Line, Tumor , Endopeptidases/metabolism , Escherichia coli/metabolism , Hirudins/metabolism , Humans , Recombinant Fusion Proteins/metabolism , Soybean Proteins/metabolism , Glycine max/metabolism
13.
J Biosci ; 42(1): 103-111, 2017 Mar.
Article En | MEDLINE | ID: mdl-28229969

MicroRNA 144 (miR-144), a small non-coding RNA, is frequently dysregulated in human several tumour progression, but its role and the underlying mechanisms in hepatocellular carcinoma (HCC) is poorly investigated. In the present study, the expression of miR-144 was firstly analysed in datasets derived from GSE21362 and TCGA, and then detected in HCC tissues and cell lines by quantitative RT-PCR (qRT-PCR) analysis. MiR-144 was shown to be significantly down-regulated in HCC tissues and cell lines. Subsequently, overexpression of miR-144 was transfected into HCC cell lines so as to investigate its biological function, including MTT, colony formation, and transwell assays. Gain of function assay revealed miR-144 remarkably inhibited cell proliferation, migration and invasion. In addition, bioinformatical analysis and luciferase reporter assay identified ZFX as a novel target of miR-144 in HCC cells, as confirmed by qRT-PCR and Western blot. Furthermore, ZFX was found to be significantly up-regulated using Oncomine database analysis. Loss of function assay further indicated knockdown of ZFX had similar effects of miR-144-mediated HCC cell proliferation and invasion. Therefore, miR-144 has been demonstrated to act as a tumour suppressor in HCC cell growth and motility by directly targeting ZFX, which implicates its potential applications in the development of HCC treatment.


Carcinoma, Hepatocellular/genetics , Kruppel-Like Transcription Factors/biosynthesis , Liver Neoplasms/genetics , MicroRNAs/genetics , Apoptosis/genetics , Carcinoma, Hepatocellular/pathology , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , Kruppel-Like Transcription Factors/genetics , Liver Neoplasms/pathology , MicroRNAs/biosynthesis , Neoplasm Invasiveness/genetics
...